Matter-Antimatter Oscillations at 2.8 Trillion Hertz

Ivan K. Furić
Enrico Fermi Institute
University of Chicago

2006 Sambamurti Memorial Lecture, BNL

Overview

- Matter vs Antimatter
- B_s Oscillations
- Tools / Experimental Apparatus
- Data Analysis
- Interpreting the Data

Initial History of Antimatter

- 1928 Dirac predicts the positron (anti-electron)
- Antiparticles have same properties as particles, but opposite charge
- 1933 positron found by Carl Anderson

More History of Antimatter

- 1955 anti-proton! Serge, Chamberlain, et al.
- 1960 anti-neutron! Cork, Piccione, et al.
- 1965 anti-deuteron found by two teams:
 - Leon Lederman et al. at BNL
 - Zichichi et al. at CERN
- anti-particles of most particles are found by now
- 1995 anti-atoms produced at CERN

Symmetries in Particle Physics

Charge (C) Time (T) "forward" Parity (P) **Spatial Inversion**

Sakharov's Conditions

 Why is there more matter than anti-matter in the universe (baryon asymmetry)?

- Baryon number must be violated
- C and CP symmetries must be violated
- Above violations take place while universe is out of thermal equilibrium

Broken Symmetries

- P: asymmetric β ray spectrum in polarized Co⁶⁰
 - 1957 C.S. Wu et al.
- C: asymmetry of μ^+ and μ^- polarization in π^{\S} decay
 - 1957 R.L. Garwin, L.M. Lederman, M. Weinreich
 - 1957 J. Friedman, V. Telegdi
- CP: in the neutral kaon system (K_S, K_L decays)
 - 1964 J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay
- CP: direct CP violation in neutral kaon system
 - 1999 KTeV collaboration
- T: rate difference for K⁰ ! K⁰ as function of time
 - CPLEAR and KTeV collaborations
- CP: in the neutral B meson system (B⁰!J/ψK_S) decays
 - 2000 BaBar and Belle collaborations

Matter – Antimatter Oscillations

Pion (π^+)

Meson: quark-antiquark bound state

 certain mesons can "swap" matter for antimatter quark without violating conservation laws

 this is the effect that we want to observe

 Matter-Antimatter oscillations established in Kaons, B⁰ mesons...

B Mesons

How can a B_s meson oscillate?

we need a process that can turn b!s (and vice versa)

Weak Interactions

- weak interactions can change quark flavor!
- mediated by the W[§] boson, example: n decay

transition inside quark family

W§ Couplings to Quarks

How a B_s meson oscillates

weak interaction simultaneously converts b!s, s!b

A Classical Analogy

Eigenstates

Oscillation frequency ~ Coupling strength

The B_s Meson Also Decays!

b quark "lives" long

$$\tau_b = 1.5 \text{ ps}$$
 $c\tau_b = 450 \text{ } \mu\text{m} = 0.45 \text{ mm}$

one lifetime (τ) is the point at which the parent sample is down by 1/e.

important for mixing 10

Use B_s decay time as stopwatch!

start with sample of pure B_s matter mesons

Decay as matter Decay as antimatter b (mixed) (un-mixed) S Production Flavor = Decay Flavor Production Flavor ≠ Decay Flavor € 0.8 0.7 æ 0.8 $p(t) = \frac{1}{2\tau} e^{-t/\tau} [1 + \cos(\Delta m_s t)]$ $p(t) = \frac{1}{2\tau} e^{-t/\tau} [1 - \cos(\Delta m_s t)]$ 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 Decay Time [ps] Decay Time [ps]

Asymmetry – a useful quantity

Realistic Detector Effects

All Effects Together

This is why previous measurements have not been able to observe B_s mixing!

Layout of the search for oscillations

- produce lots of B_s meson decays
- reconstruct B_s meson decays
- was B_s produced as matter or antimatter?
- did B_s decay as matter or antimatter ?
- measure B_s meson decay time
- look for oscillation pattern!
- let's see what tools we have available...

Tevatron Collider

Production of b quarks

"flavor excitation" "gluon splitting"

b quarks are produced in quark- antiquark pairs!
 (this is useful for figuring out the production flavor)

From b quarks to B_s mesons

bare b quarks don't exist, but form mesons

signature: a K⁺ is likely to be found near a B_s! (this is another way to tell the production flavor)

Multi-Purpose Detectors

CDF Detector

CDF Detector Rolling

Tracking system

- immersed in 1.4 T solenoidal magnetic field
- charged particles follow helical trajectories
 Drift Chamber (r~1.4 m)
 Silicon Tracker

A B_s Meson Decay in CDF

production vertex

25μ m £ 25 μ m

 $\mathsf{B}_s!\mathsf{D}_s^{\text{-}}\pi^{\text{+}}$ D_s-!φ π-φ! K+K-

0.3

x [cm]

Reconstructing B_s Decay Signals

B_s Meson Decay Time

Decay Time Resolution

superior decay time resolution gives CDF sensitivity at larger values of Δm_s than previous experiments

Avg resolution $\sim \frac{1}{4}$ period at Δ m_s = 18 ps⁻¹

Was the B_s Produced as Matter?

- "opposite side": look for other B meson in event, if it was matter, the B_s was antimatter!
- "same side": fragmentation remnants

Ingredients for oscillation search

- ✓ produce lots of B_s meson decays
- ✓ reconstruct B_s meson decays
- ✓ was B_s produced as matter or antimatter?
 - flavor tagging techniques
- ✓ did B_s decay as matter or antimatter?
 - decay remnants tell us the decay flavor
- ✓ measure B_s meson decay time
- we have all the necessary ingredients
- look for oscillation pattern!

A Working Example: B⁰ Oscillations

The B⁰ meson oscillates with ∆m ¼ 0.5 ps⁻¹

Search for mixing! tool that scans frequencies

Fourier Transform of Asymmetry

$$\mathcal{A}(\Delta m) = \int_0^{T_{max}} \mathcal{A}(t) \cos(\Delta m \cdot t) dt$$

Useful properties:

A(Δ m) $\frac{1}{4}$ 0 if no mixing at Δ m A(Δ m) $\frac{1}{4}$ 1 if mixing at Δ m

"calibrated for detector effects"

Amplitude "Scanning"

Amplitude Scan: B⁰ Mixing

Amplitude Scan: B_s Mixing, 2006 World Average

Amplitude Scan: D0 B_s Mixing Search, March 2006

Amplitude Scan: CDF B_s Mixing Search, April 2006

Systematic Uncertainties & Result

fit finds the oscillation frequency (∆m_s)
most probable to match our data signature

- systematic uncertainties
 - due to uncertainties of tracker geometry, alignme
 - roughly § 0.5%

$$\Delta m_s = 17.31^{+0.33}_{-0.18}(\text{stat}) \pm 0.07(\text{syst})\text{ps}^{-1}$$

Standard Model Prediction

analogous diagram
 for B⁰ mixing

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m(B_s)}{m(B^0)} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$$

global fit for W-quark coupling constants:

$$\Delta$$
ms: 18.3 $^{+6.5}_{-1.6}$ ps⁻¹

our measurement agrees:

$$\Delta m_s = 17.31^{+0.33}_{-0.18}(\text{stat}) \pm 0.07(\text{syst})\text{ps}^{-1}$$

How would New Physics influence the B_s oscillation frequency?

- new particles in the loop change frequency
- new physics has evaded detection yet again!

A History of B Meson Oscillations (so far)

- 1987 UA1 evidence for B⁰ and B_s mixing
- 1987 ARGUS observation of B⁰ mixing
- (various detectors) improved measurements of B⁰ mixing frequency (Δ m_d)
- 2002: BaBar and Belle measure ∆ m_d at ~1%
- Tevatron "one-two punch" at B_s mixing:
 - March 2006: D0 sees hints of B_s oscillation
 - April 2006: CDF measures B_s oscillation frequency

The Future of B_s Oscillations

- the probability of a "fake" signal from the Tevatron experiments is still p ~ 10⁻³
- the book is not closed until p < 10^{-7} ("5 σ ")
- both detectors are taking more data
- also working on analysis improvements
- stay tuned for the exciting developments!
- CP violation is next:
 - is matter preferred over antimatter in B_s?

Supporting Slides

Why can the B_s meson mix?

- simultaneous flavor change b! s, s! b —
- mediated by W bosons

Real Measurement Layout

Likelihood Profile

mixing signal

$$\Delta \log(\mathcal{L}) = \log\left(\frac{\mathcal{L}(A=1)}{\mathcal{L}(A=0)}\right)^{1}$$

no mixing at given freq

 probability "bump" at signal frequency

Probability of a "fake" signal

 compare to distribution of Δlog(L) for sample with randomized matter/antimatter tags

probability of "random tag" conspiracy: 0.5%